Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Materials (Basel) ; 17(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38204102

RESUMEN

ß-type titanium alloys with a body-centered cubic structure are highly useful in orthopedics due to their low elastic modulus, lower than other commonly used alloys such as stainless steel and Co-Cr alloys. The formation of the ß phase in titanium alloys is achieved through ß-stabilizing elements such as Nb, Mo, and Ta. To produce new ß alloys with a low modulus of elasticity, this work aimed to produce our alloy system for biomedical applications (Ti-50Nb-Mo). The alloys were produced by arc-melting and have the following compositions Ti-50Nb-xMo (x = 0, 3, 5, 7, and 12 wt% Mo). The alloys were characterized by density, X-ray diffraction, scanning electron microscopy, microhardness, and elastic modulus. It is worth highlighting that this new set of alloys of the Ti-50Nb-Mo system produced in this study is unprecedented; due to this, there needs to be a report in the literature on the production and structural characterization, hardness, and elastic modulus analyses. The microstructure of the alloys has an exclusively ß phase (with bcc crystalline structure). The results show that adding molybdenum considerably increased the microhardness and decreased the elastic modulus, with values around 80 GPa, below the metallic materials used commercially for this type of application. From the produced alloys, Ti-50Nb-12Mo is highlighted due to its lower elastic modulus.

2.
J Funct Biomater ; 14(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37754866

RESUMEN

This study aimed to produce Ti-15Nb alloy with a low elastic modulus, verify its biocompatibility, and determine whether the alloy indirectly influences cellular viability and morphology, as well as the development of the osteogenic phenotype in cells cultured for 2, 3, and 7 days derived from rat calvarias. Two heat treatments were performed to modify the mechanical properties of the alloy where the Ti-15Nb alloy was heated to 1000 °C followed by slow (-5 °C/min) (SC) and rapid cooling (RC). The results of structural and microstructural characterization (XRD and optical images) showed that the Ti-15Nb alloy was of the α + ß type, with slow cooling promoting the formation of the α phase and rapid cooling the formation of the ß phase, altering the values for the hardness and elastic modulus. Generally, a more significant amount of the α phase in the Ti-15Nb alloy increased the elastic modulus value but decreased the microhardness value. After the RC treatment, the results demonstrated that the Ti-15Nb alloy did not present cytotoxic effects on the osteogenic cells. In addition, we did not find variations in the cell quantity in the microscopy results that could suggest cell adhesion or proliferation modification.

3.
Materials (Basel) ; 16(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36902942

RESUMEN

It is crucial for clinical needs to develop novel titanium alloys feasible for long-term use as orthopedic and dental prostheses to prevent adverse implications and further expensive procedures. The primary purpose of this research was to investigate the corrosion and tribocorrosion behavior in the phosphate buffered saline (PBS) of two recently developed titanium alloys, Ti-15Zr and Ti-15Zr-5Mo (wt.%) and compare them with the commercially pure titanium grade 4 (CP-Ti G4). Density, XRF, XRD, OM, SEM, and Vickers microhardness analyses were conducted to give details about the phase composition and the mechanical properties. Additionally, electrochemical impedance spectroscopy was used to supplement the corrosion studies, while confocal microscopy and SEM imaging of the wear track were used to evaluate the tribocorrosion mechanisms. As a result, the Ti-15Zr (α + α' phase) and Ti-15Zr-5Mo (α″ + ß phase) samples exhibited advantageous properties compared to CP-Ti G4 in the electrochemical and tribocorrosion tests. Moreover, a better recovery capacity of the passive oxide layer was observed in the studied alloys. These results open new horizons for biomedical applications of Ti-Zr-Mo alloys, such as dental and orthopedical prostheses.

4.
Materials (Basel) ; 16(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36984232

RESUMEN

The technique of surface modification using electrolytic oxidation, called micro-arc oxidation (MAO), has been used in altering the surface properties of titanium alloys for biomedical purposes, enhancing their characteristics as an implant (biocompatibility, corrosion, and wear resistance). The layer formed by the micro-arc oxidation process induces the formation of ceramic oxides, which can improve the corrosion resistance of titanium alloys from the elements in the substrate, enabling the incorporation of bioactive components such as calcium, phosphorus, and magnesium. This study aims to modify the surfaces of Ti-25Ta-10Zr-15Nb (TTZN1) and Ti-25Ta-20Zr-30Nb (TTZN2) alloys via micro-arc oxidation incorporating Ca, P, and Mg elements. The chemical composition results indicated that the MAO treatment was effective in incorporating the elements Ca (9.5 ± 0.4 %atm), P (5.7 ± 0.1 %atm), and Mg (1.1 ± 0.1 %atm), as well as the oxidized layer formed by micropores that increases the surface roughness (1160 nm for the MAO layer of TTZN1, 585 nm for the substrate of TTZN1, 1428 nm for the MAO layer of TTZN2, and 661 nm for the substrate of TTZN2). Regarding the phases formed, the films are amorphous, with low crystallinity (4 and 25% for TTZN2 and TTZN1, respectively). Small amounts of anatase, zirconia, and calcium carbonate were detected in the Ti-25Ta-10Zr-15Nb alloy.

5.
Materials (Basel) ; 17(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38204010

RESUMEN

Among the different surface modification techniques, micro-arc oxidation (MAO) is explored for its ability to enhance the surface properties of Ti alloys by creating a controlled and durable oxide layer. The incorporation of Cu ions during the MAO process introduces additional functionalities to the surface, offering improved corrosion resistance and antimicrobial activity. In this study, the ß-metastable Ti-30Nb-5Mo alloy was oxidated through the MAO method to create a Cu-doped TiO2 coating. The quantity of Cu ions in the electrolyte was changed (1.5, 2.5, and 3.5 mMol) to develop coatings with different Cu concentrations. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron and atomic force microscopies, contact angle, and Vickers microhardness techniques were applied to characterize the deposited coatings. Cu incorporation increased the antimicrobial activity of the coatings, inhibiting the growth of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa bacteria strains, and Candida albicans fungus by approximately 44%, 37%, 19%, and 41%, respectively. Meanwhile, the presence of Cu did not inhibit the growth of Escherichia coli. The hardness of all the deposited coatings was between 4 and 5 GPa. All the coatings were non-cytotoxic for adipose tissue-derived mesenchymal stem cells (AMSC), promoting approximately 90% of cell growth and not affecting the AMSC differentiation into the osteogenic lineage.

6.
Sci Rep ; 12(1): 11874, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831317

RESUMEN

Ti and its alloys are the most used metallic biomaterials devices due to their excellent combination of chemical and mechanical properties, biocompatibility, and non-toxicity to the human body. However, the current alloys available still have several issues, such as cytotoxicity of Al and V and high elastic modulus values, compared to human bone. ß-type alloys, compared to α-type and (α + ß)-type Ti alloys, have lower elastic modulus and higher mechanical strength. Then, new biomedical ß-type alloys are being developed with non-cytotoxic alloying elements, such as Mo and Nb. Therefore, Ti-5Mo-xNb system alloys were prepared by argon arc melting. Chemical composition was evaluated by EDS analysis, and the density measurements were performed by Archimedes' method. The structure and microstructure of the alloys were obtained by X-ray diffraction and optical and scanning electron microscopy. Microhardness values were analyzed, and MTT and crystal violet tests were performed to assess their cytotoxicity. As the Nb concentration increases, the presence of the ß-Ti phase also grows, with the Ti-5Mo-30Nb alloy presenting a single ß-Ti phase. In contrast, the microhardness of the alloys decreases with the addition of Nb, except the Ti-5Mo-10Nb alloy, which has its microhardness increased probably due to the ω phase precipitation. Biological in-vitro tests showed that the alloys are not cytotoxic.


Asunto(s)
Aleaciones , Niobio , Aleaciones/química , Materiales Biocompatibles/química , Módulo de Elasticidad , Humanos , Ensayo de Materiales , Niobio/química , Titanio/química , Difracción de Rayos X
7.
Polymers (Basel) ; 14(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631957

RESUMEN

There are several treatment methods available for bone repair, although the effectiveness becomes limited in cases of large defects. The objective of this pre-clinical protocol was to evaluate the grafting of hydroxyapatite/tricalcium phosphate (BCP) ceramic biomaterial (B; QualyBone BCP®, QualyLive, Amadora, Portugal) together with the heterologous fibrin biopolymer (FB; CEVAP/UNESP Botucatu, Brazil) and with photobiomodulation (PBM; Laserpulse®, Ibramed, Amparo, Brazil) in the repair process of bone defects. Fifty-six rats were randomly divided into four groups of seven animals each: the biomaterial group (G1/B), the biomaterial plus FB group (G2/BFB); the biomaterial plus PBM group (G3/B + PBM), and the biomaterial plus FB plus PBM group (G4/BFB + PBM). After anesthesia, a critical defect was performed in the center of the rats' parietal bones, then filled and treated according to their respective groups. The rats were euthanized at 14 and 42 postoperative days. Histomorphologically, at 42 days, the G4/BFB + PBM group showed a more advanced maturation transition, with more organized and mature bone areas forming concentric lamellae. A birefringence analysis of collagen fibers also showed a more advanced degree of maturation for the G4/BFB + PBM group. In the comparison between the groups, in the two experimental periods (14 and 42 days), in relation to the percentage of formation of new bone tissue, a significant difference was found between all groups (G1/B (5.42 ± 1.12; 21.49 ± 4.74), G2/BFB (5.00 ± 0.94; 21.77 ± 2.83), G3/B + PBM (12.65 ± 1.78; 29.29 ± 2.93), and G4/BFB + PBM (12.65 ± 2.32; 31.38 ± 2.89)). It was concluded that the use of PBM with low-level laser therapy (LLLT) positively interfered in the repair process of bone defects previously filled with the biocomplex formed by the heterologous fibrin biopolymer associated with the synthetic ceramic of hydroxyapatite and tricalcium phosphate.

8.
Int J Implant Dent ; 6(1): 46, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32839885

RESUMEN

PURPOSE: The aim of this study was to investigate the response of osteogenic cell lineage and gingival fibroblastic cells to different surface treatments of grade IV commercially pure Titanium (cpTi) disks. MATERIAL AND METHODS: Grade IV cpTi disks with different surfaces were produced: machined (M), sandblasting (B), sandblasting and acid subtraction (NP), and hydrophilic treatment (ACQ). Surface microtopography characteristics and chemical composition were investigated by scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Adhesion and proliferation of SC-EHAD (human surgically-created early healing alveolar defects) and HGF-1 (human gingival fibroblasts) on Ti disks were investigated at 24 and 48 h, and osteogenic differentiation and mineralization were evaluated by assessing alkaline phosphatase (ALP) activity and alizarin red staining, respectively. RESULTS: No significant differences were found among the various surface treatments for all surface roughness parameters, except for skewness of the assessed profile (Rsk) favoring M (p = 0.035 ANOVA). M disks showed a slightly higher (p > 0.05; Kruskal-Wallis/Dunn) adhesion of HGF-1 (89.43 ± 9.13%) than SC-EHAD cells (57.11 ± 17.72%). ACQ showed a significantly higher percentage of SC-EHAD (100%) than HGF-1 (69.67 ± 13.97%) cells adhered at 24 h. SC-EHAD cells expressed increased ALP activity in osteogenic medium at M (213%) and NP (235.04%) surfaces, but higher mineralization activity on ACQ (54.94 ± 4.80%) at 14 days. CONCLUSION: These findings suggest that surface treatment influences the chemical composition and the adhesion and differentiation of osteogenic cells in vitro. CLINICAL RELEVANCE: Hydrophilic surface treatment of grade IV cpTi disks influences osteogenic cell adhesion and differentiation, which might enhance osseointegration.

9.
Sci Rep ; 10(1): 6298, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286366

RESUMEN

Due to excellent biocompatibility and corrosion resistance, the application of titanium alloys in orthopedic and dental implants has been increasing since the 1970s. However, the elasticity of these alloys as measured by their Young's modulus is still about two to four times higher than that of human cortical bone. The most widely used titanium alloy for biomedical applications is Ti-6Al-4V, however, previous studies have shown that the vanadium used in this alloy causes allergic reactions in human tissue and aluminum, also used in the alloy, has been associated with neurological disorders. To solve this problem, new titanium alloys without the presence of these elements and with the addition of different elements, usually beta-stabilizers, are being developed. Manganese is a strong candidate as an alloying element for the development of new beta-type titanium alloys, due to its abundance and low cytotoxicity. In this study, Ti-10Mo-5Mn, Ti-15Mo-2.5Mn and Ti-15Mo-5Mn alloys were prepared in an arc furnace, which resulted in an alloy structure clearly showing the predominance of the beta phase with a body-centered cubic crystalline structure. The observed microstructure confirmed the results on the structural characterization of alloys. Measurement of the indirect cytotoxicity of the alloys showed that the extracts of the studied alloys are not cytotoxic for fibroblastic cells.

10.
J Mater Sci Mater Med ; 31(2): 19, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965338

RESUMEN

Titanium alloys have been widely used as biomaterials, especially for orthopedic prostheses and dental implants, but these materials have Young's modulus almost three times greater than human cortical bones. Because of this, new alloys are being produced for the propose of decreasing Young's modulus to achieve a more balanced mechanical compatibility with the bone. In this paper, it is reported the development of Ti-25Ta alloys as a base material, in which was introduced zirconium, with concentration varying between 0 and 40 wt%, with the aim of biomedical applications. The alloys were prepared in an arc-melting furnace. The microstructural analysis was performed by x-ray diffraction as well as optical and scanning electron microscopy. Selected mechanical properties were analyzed by microhardness and Young's modulus measurements, and cytotoxicity analysis by indirect test. X-ray measurements revealed the presence of α″ phase in the alloy without zirconium; α″ + ß phases for alloys with 10, 20, and 30 wt% of zirconium, and ß phase only for the alloy with 40 wt% of zirconium. These results were corroborated by the microscopy results. The hardness of the alloy was higher than that of cp-Ti due to the actions of zirconium and tantalum as hardening agents. The Young's modulus decreases with high levels of zirconium due to the stabilization of the ß phase. The cytotoxicity test showed that the extracts of studied alloys are not cytotoxic for osteoblast cells in short periods of culture.


Asunto(s)
Aleaciones/química , Aleaciones/toxicidad , Osteoblastos/efectos de los fármacos , Tantalio/química , Titanio/química , Circonio/química , Animales , Supervivencia Celular , Ensayo de Materiales , Ratones
11.
Artif Organs ; 44(8): 811-817, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31876963

RESUMEN

Titanium alloys are widely used in the biomedical field due to their excellent resistance to corrosion, high mechanical strength/density ratio, low elastic modulus, and good biocompatibility. Niobium is a ß-stabilizer element that has the potential to decrease elastic modulus and possesses excellent corrosion resistance. In this article, Ti-15Nb alloy was prepared via arc-melting, with the aim of using it in biomedical applications to replace implants that fail due to mechanical incompatibility with human bone. This Ti-15Nb alloy was structurally, chemically, and microstructurally characterized. Its mechanical properties were analyzed via Vickers microhardness and elastic modulus measurements. The cytotoxicity of the alloy was evaluated via direct and indirect MTT tests. In the direct MTT test, the cells were grown on alloy and in the indirect test, Ti-15Nb alloy extracts were prepared (1 g/1 mL at 310 K for 48 hours). The results of chemical composition showed that the alloy produced has good quality and low content of gaseous impurities, such as oxygen and nitrogen. The obtained results for structure and microstructure indicated the presence of the martensite α' phase. The microhardness of the Ti-15Nb alloy is superior to that of cp-Ti due to solid solution hardening, and the alloy has a better elastic modulus as compared to pure titanium. Cytotoxic effects were not observed. The Ti-15Nb alloy shows good results of mechanical properties and does not show cytotoxic effects. In addition, morphological variations were not found in the cells and good cell adhesion in all the studied conditions was observed. In general, the alloy proposed in this article has satisfactory characteristics as a biomedical material.


Asunto(s)
Aleaciones/química , Niobio/química , Titanio/química , Aleaciones/efectos adversos , Animales , Materiales Biocompatibles/efectos adversos , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Línea Celular , Elasticidad , Dureza , Ratones , Microscopía , Niobio/efectos adversos , Titanio/administración & dosificación , Difracción de Rayos X
12.
Materials (Basel) ; 12(19)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31574978

RESUMEN

Titanium and its alloys currently are used as implants, possessing excellent mechanical properties (more suited than stainless steel and Co-Cr alloys), good corrosion resistance and good biocompatibility. The titanium alloy used for most biomedical applications is Ti-6Al-4V, however, studies showed that vanadium and aluminum cause allergic reactions in human tissues and neurological disorders. New titanium alloys without the presence of these elements are being studied. The objective of this study was to analyze the influence of thermomechanical treatments, such as hot-rolling, annealing and solution treatment in the structure, microstructure and mechanical properties of the Ti-25Ta-Zr ternary alloy system. The structural and microstructural analyses were performed using X-ray diffraction, as well as optical, scanning and transmission electron microscopy. The mechanical properties were analyzed using microhardness and Young's modulus measurements. The results showed that the structure of the materials and the mechanical properties are influenced by the different thermal treatments: rapid cooling treatments (hot-rolling and solubilization) induced the formation of α" and ß phases, while the treatments with slow cooling (annealing) induced the formation of martensite phases. Alloys in the hot-rolled and solubilized conditions have better mechanical properties results, such as low elastic modulus, due to retention of the ß phase in these alloys.

13.
J Appl Oral Sci ; 26: e20170528, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29898182

RESUMEN

INTRODUCTION: High levels of shrinkage stress caused by volumetric variations during the activation process are one of the main problems in the practical application of composite resins. OBJECTIVE: The aim of this study is to reduce the shrinkage stress and minimize the effects caused by composite resin volumetric variation due to the photopolymerization. In this way, this work proposes a systematic study to determine the optimal dimming function to be applied to light curing processes. MATERIAL AND METHODS: The study was performed by applying mathematical techniques to the optimization of nonlinear objective functions. The effectiveness of the dimming function was evaluated by monitoring the polymerization shrinkage stress during the curing process of five brands/models of composites. This monitoring was performed on a universal testing machine using two steel bases coupled in the arms of the machine where the resin was inserted and polymerized. The quality of the composites cured by the proposed method was analyzed and compared with the conventional photoactivation method by experiments to determine their degree of conversion (DC). Absorbance measurements were performed using Fourier-transform infrared spectroscopy (FT-IR). A T-test was performed on DC results to compare the photoactivation techniques. We also used scanning electron microscopy (SEM) to analyze in-vitro the adhesion interface of the resin in human teeth. RESULTS: Our results showed that the use of the optimal dimming function, named as exponential, resulted in the significant reduction of the shrinkage stress (~36.88% ±6.56 when compared with the conventional method) without affecting the DC (t=0.86, p-value=0.44). The SEM analyses show that the proposed process can minimize or even eliminate adhesion failures between the tooth and the resin in dental restorations. CONCLUSION: The results from this study can promote the improvement of the composite resin light curing process by the minimization of polymerization shrinkage effects, given an operational standardization of the photoactivation process.


Asunto(s)
Resinas Compuestas/química , Resinas Compuestas/efectos de la radiación , Curación por Luz de Adhesivos Dentales/métodos , Polimerizacion/efectos de la radiación , Adhesividad , Análisis del Estrés Dental , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Transición de Fase/efectos de la radiación , Valores de Referencia , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Factores de Tiempo
14.
J. appl. oral sci ; 26: e20170528, 2018. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-954505

RESUMEN

Abstract High levels of shrinkage stress caused by volumetric variations during the activation process are one of the main problems in the practical application of composite resins. Objective The aim of this study is to reduce the shrinkage stress and minimize the effects caused by composite resin volumetric variation due to the photopolymerization. In this way, this work proposes a systematic study to determine the optimal dimming function to be applied to light curing processes. Material and Methods The study was performed by applying mathematical techniques to the optimization of nonlinear objective functions. The effectiveness of the dimming function was evaluated by monitoring the polymerization shrinkage stress during the curing process of five brands/models of composites. This monitoring was performed on a universal testing machine using two steel bases coupled in the arms of the machine where the resin was inserted and polymerized. The quality of the composites cured by the proposed method was analyzed and compared with the conventional photoactivation method by experiments to determine their degree of conversion (DC). Absorbance measurements were performed using Fourier-transform infrared spectroscopy (FT-IR). A T-test was performed on DC results to compare the photoactivation techniques. We also used scanning electron microscopy (SEM) to analyze in-vitro the adhesion interface of the resin in human teeth. Results Our results showed that the use of the optimal dimming function, named as exponential, resulted in the significant reduction of the shrinkage stress (~36.88% ±6.56 when compared with the conventional method) without affecting the DC (t=0.86, p-value=0.44). The SEM analyses show that the proposed process can minimize or even eliminate adhesion failures between the tooth and the resin in dental restorations. Conclusion The results from this study can promote the improvement of the composite resin light curing process by the minimization of polymerization shrinkage effects, given an operational standardization of the photoactivation process.


Asunto(s)
Resinas Compuestas/efectos de la radiación , Resinas Compuestas/química , Curación por Luz de Adhesivos Dentales/métodos , Polimerizacion/efectos de la radiación , Valores de Referencia , Estrés Mecánico , Factores de Tiempo , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Adhesividad , Espectroscopía Infrarroja por Transformada de Fourier , Análisis del Estrés Dental , Transición de Fase/efectos de la radiación
15.
Mater Sci Eng C Mater Biol Appl ; 67: 511-515, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287149

RESUMEN

Titanium has an allotropic transformation around 883°C. Below this temperature, the crystalline structure is hexagonal close-packed (α phase), changing to body-centered cubic (ß phase). Zirconium has the same allotropic transformation around 862°C. Molybdenum has body-centered cubic structure, being a strong ß-stabilizer for the formation of titanium alloys. In this paper, the effect of substitutional molybdenum was analyzed on the structure, microstructure and selected mechanical properties of Ti-20Zr-Mo (wt%) alloys to be used in biomedical applications. The samples were prepared by arc-melting and characterized by x-ray diffraction with subsequent refinement by the Rietveld method, optical and scanning electron microscopy. The mechanical properties were analyzed by Vickers microhardness and dynamic elasticity modulus. X-ray measurements and Rietveld analysis revealed the presence of α' phase without molybdenum, α'+α″ phases with 2.5wt% of molybdenum, α″+ß phases with 5 and 7.5wt% of molybdenum, and only ß phase with 10wt% of molybdenum. These results were corroborated by microscopy results, with a microstructure composed of grains of ß phase and lamellae and needles of α' and α″ phase in intra-grain the region. The hardness of the alloy was higher than the commercially pure titanium, due to the action of zirconium and molybdenum as hardening agents. The samples have a smaller elasticity modulus than the commercially pure titanium.


Asunto(s)
Aleaciones/química , Molibdeno/química , Titanio/química , Circonio/química
16.
Materials (Basel) ; 7(3): 2183-2193, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-28788562

RESUMEN

Cp-Ti is the most common material used for dental implants, but its elastic modulus is around five times higher than that of bone. Recently, promising alloys that add Nb, Ta, Zr and Mo to Ti have been developed. The mechanical properties of these alloys are directly related to its microstructure and the presence of interstitial elements, such as oxygen, carbon, nitrogen and hydrogen. In this study, the in vitro cytotoxicity of Ti-35Nb-7Zr-5Ta (TNZT) alloys was analyzed in the as-received condition and after being doped with several small quantities of oxygen on a cultured osteogenic cell. The cell's morphology was also examined by scanning electron microscopy (SEM). The TNZT alloy presented no cytotoxic effects on osteoblastic cells in the studied conditions.

17.
Artif Organs ; 35(5): 516-21, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21595721

RESUMEN

The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles , Calor , Niobio/química , Oxígeno/química , Titanio/química , Células 3T3 , Aleaciones/toxicidad , Animales , Adhesión Celular , Proliferación Celular , Forma de la Célula , Supervivencia Celular/efectos de los fármacos , Módulo de Elasticidad , Dureza , Pruebas de Dureza , Ensayo de Materiales , Ratones , Niobio/toxicidad , Osteoblastos/fisiología , Diseño de Prótesis , Análisis Espectral , Propiedades de Superficie , Titanio/toxicidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA